March 7, 2018

We have been working on our instrument for measuring chemical reaction kinetics and are working to document progress on our "Projects" page.  On this page, you will see photos of our rapid mixing apparatus, our flow cell for UV-vis absorbance and the products of our ef...

November 13, 2016

OK, so you damaged the microcontroller board on your WheeStat, probably by trying to plug in the usb cable upside down or trying to use the wrong style of usb cable,  or perhaps you were fooling around under the hood and fried the  electronic some how.  Anyway, the mic...

September 12, 2016

We are working to help further develop a low cost spectrometer design that was published online by B. Hickman.  To support this work, we are developing simple methods to make reflective optics. 

The figure to the left shows a screenshot of a parabolic reflector des...

December 23, 2014

We have begun work on the software for the Titraumatic, an automated titration apparatus that incorporates our syringe pump, a pH probe and software to coordinate an experiment.  Below is a screenshot from our first attempt at a pH titration.  While the instrument is s...

December 22, 2014

We recently purchased a MakerGear M2 3d printer to build parts for our syringe pump project  and have produced and tested a number of prototype pumps.   In addition to the printed plastic parts, the pumps use bearings, rods, a stepper motor and other available hardware...

August 11, 2014

Took delivery of our first production run of manufactured circuit boards.  Got headers and cable in today.  Now all we are waiting on is a shipment of usb flash drives  and ten meters of silver wire


July 21, 2014

The datalogger hardware is a slightly modified version of datalogger shield mounted on a Tiva LaunchPad development board.   Inputs were generated using a second Tiva LaunchPad outputting analog (pwm) signals of the form A = a*sin(bt)*sin(ct) and B = d*sin(bt)*cos(ft)....

Please reload

Featured Posts

Automated titration

December 23, 2014

Please reload

Recent Posts

September 12, 2016

December 23, 2014

August 11, 2014

Please reload

Search By Tags
Please reload

Follow Us
  • Facebook Classic
  • Twitter Classic
  • Google Classic
View Cart: (0)‏



August 2020:

  Work during summer 2020 focused on the WheeTrometer spectrometer and on the WheeStat potentiostat.

  The spectrometer is coming along.  We are currently working to improve the intensity resolution by adopting a high resolution analog to digital converter.

  Our work on the WheeStat is focused mostly on increasing the current output available.  In addition, we hope to increase the range of frequencies that can be obtained by adding a digital to analog converter.

August, 2017:

   Work during summer 2017 focused on two projects, the WheeStat potentiostat and the stopped flow spectrometry apparatus.

  •    Work on the WheeStat included changes to the user interface, firmware and hardware.  The newest version of the user interface, WheeStat6.0c, has a new zoom feature and a few bugs from the older interface have been fixed.  We believe the new hardware will be out by the end of 2017.  The new hardware will have an improved method for turning off applied voltatage between experiments.  This is a hardware fix that requires modification of the firmware as well.  We will offer an add-on for our earlier hardware versions that incorporates this feature.  Addditional changes include increased current ranges and the potential for significantly increased scan rates.

  • Work on the stopped flow spectrometry project focused on increasing the injection speed.  Our initial effort focused on developing a rack and pinnion drive for the syringes.  This improved injection speed relative to the lead screw drive but failed to meet target speeds due, we believe, to limited torque provided by the small NEMA 17 motors we chose.  Our next attempt employed larger NEMA 23 motors.  These have significantly higher torque.  Unfortunately, our flow cell was unable to contain the generated pressure and began leaking.  Current efforts are focused on developing a lab-built UV-vis cell that will hold higher pressures.


September, 2016:

  • Our work to automate solid phase synthesis of peptides / DNA, etc has progressed well, although the chemistry is more involved that I had origianally thought.  We have made our first attempt at synthesis of a cystiene modified tri-peptide

  • Our application for recognition by the IRS as tax exempt under 501(c)3 has been approved.

  • We have begun work on a low cost visible spectrometer that will use home built reflective optics.

  • We are working on developing a stopped flow kinetics instrument based on commercially avialable spectrometer.  Our current prototype is able to acquire spectra within 120 ms of mixing.  This dead time appears to be limited by the power of the motors we used.  We are investigating the use of larger motors and hope to get the dead time down to below 12 ms.






Presentation  in Atlanta, GA,  March 6-10, 2016

Our talk was well recieved at the Educational symposium at PittCon


4989 Tilley Creek Road

Cullowhee, NC 28723

Tel: 828-293-7781



  • w-facebook
  • Twitter Clean
  • w-googleplus



Oct 23-27, SouthEast Regional Meeting of the American Chemical Society, Columbia SC

© 2015 by Smoky Mt Scientific. PROUDLY MADE BY WIX.COM